
QUERY BY HUMMING OF MIDI AND AUDIO USING LOCALITY SENSITIVE HASHING

Matti Ryynänen and Anssi Klapuri

Tampere University of Technology
Institute of Signal Processing

P.O.Box 553, FI-33101 Tampere, Finland
{matti.ryynanen, anssi.klapuri}@tut.fi

ABSTRACT

This paper proposes a query by humming method based on locality

sensitive hashing (LSH). The method constructs an index of melodic

fragments by extracting pitch vectors from a database of melodies.

In retrieval, the method automatically transcribes a sung query into

notes and then extracts pitch vectors similarly to the index construc-

tion. For each query pitch vector, the method searches for simi-

lar melodic fragments in the database to obtain a list of candidate

melodies. This is performed efficiently by using LSH. The candidate

melodies are ranked by their distance to the entire query and returned

to the user. In our experiments, the method achieved mean recipro-

cal rank of 0.885 for 2797 queries when searching from a database

of 6030 MIDI melodies. To retrieve audio signals, we apply an auto-

matic melody transcription method to construct the melody database

directly from music recordings and report the corresponding retrieval

results.

Index Terms— Music, Information retrieval, Database query

processing, Audio Systems

1. INTRODUCTION

Query by humming (QBH) refers to music information retrieval sys-

tems where short audio clips of singing or humming act as queries.

In a normal use case of QBH, a user wants to find a song from a

large database of music recordings. If the user does not remember

the name of the artist or the song to make a metadata query, a natural

option is to sing, hum, or whistle a part of the melody of the song

into a microphone and let a QBH system to retrieve the song.

The QBH task can be broadly divided into two subproblems:

i) converting a query into a format which enables robust search-

ing and ii) matching the query with melodies in the database. The

former problem is often associated with automatic transcription of

a query into temporally segmented note events or into frame-wise

measured pitch trajectory, whereas the latter concentrates on measur-

ing melodic similarity. See [1] for an overview of music information

retrieval systems and research on melodic similarity.

There exist lots of QBH studies in the literature. Most approaches

use either note or pitch sequence to represent the query. Matching

approaches include string matching techniques [2], hidden Markov

models [3, 4], and dynamic programming [5]. A number of the cur-

rent state-of-the-art QBH systems have been evaluated in Music In-

formation Retrieval Evaluation eXchange (MIREX) 2006 and 2007.

The major challenges for QBH systems include i) handling of

highly varying quality of queries, ii) huge size of melody databases,

This work was supported by the Academy of Finland, project
No. 213462 (Finnish Centre of Excellence program 2006–2011).

QUERY
TRANSCRIPTION LSH NN SEARCH

RETRIEVED
MELODIES

MELODY
DATABASE

(MIDI)

NEW AUDIO
RECORDINGS

AUTOMATIC
MELODY

TRANSCRIPTION

CANDIDATE
RANKING

MELODIC
FRAGMENT

INDEX

PITCH VECTOR
EXTRACTION

PITCH VECTOR
EXTRACTION

RETRIEVAL

CONSTRUCTION OF MELODIC FRAGMENT INDEX

USER QUERY

Fig. 1. A block diagram of the proposed method.

and iii) automatic production of the melody databases. First, the

quality of queries may vary drastically in terms of staying in tune

and tempo and also in the recording quality of the query audio. Sec-

ond, linear search over database items is not acceptable due to huge

databases of music. Third, most of the QBH research has concen-

trated on searching from databases of MIDI melodies and it would be

highly desirable to obtain such databases directly from music record-

ings. From an application point of view, this would also enable im-

mediate playback of the retrieved melody segments in the original

music piece.

We propose a robust QBH method with sublinear search time

over database items. Figure 1 shows a block diagram of the method.

Given a database of melodies in MIDI format, the method constructs

an index of melodic fragments by extracting pitch vectors. A pitch

vector stores an approximate representation of melody contour within

a fixed-length time window. In retrieval, the method automatically

converts a query into MIDI notes and then extracts pitch vectors. For

each query pitch vector, the method searches for nearest neighbors

in Euclidean space from the index of database melody fragments to

obtain melody candidates and their matching positions in time. This

can be performed very efficiently by using locality sensitive hash-

ing (LSH). Final ranking of candidates is done by comparing the

whole transcribed query to each candidate melody segment. Due

to the melodic fragment index, the method manages long database

melodies directly, without having to segment melodies into phrases.

Also, the queries do not have to start from the beginning of a melodic

phrase. Using LSH provides a significant speed-up and retrieval per-

formance comparable to the state-of-the-art.

To retrieve audio signals, we demonstrate the use of an auto-

matic melody transcription method to produce melody database di-

rectly from music recordings and achieve very encouraging results.

Experimental results for QBH of audio were reported only very re-

cently [6].

22491-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

58

60

62

64

66

68

70
A part of MIDI melody

time (s)

M
ID

I n
ot

e
nu

m
be

r

Melody notes
An extracted pitch vector

−6

−4

−2

0

2

4

6

 p
1
 for b

1
 = 0

M
ID

I n
ot

e
nu

m
be

r

 p
2
 for b

2
 = 0.53 p

3
 for b

3
 = 0.93 p

4
 for b

4
 = 1.1

Fig. 2. An example of pitch vector extraction.

2. CONSTRUCTING INDEX OF MELODIC FRAGMENTS

The term melodic fragment refers here to a melody pitch contour

within a fixed-length time window. The method constructs an index

which stores melodic fragments, their temporal positions within the

database melodies, and melody identifiers. The melody identifier de-

termines the song from which a melody fragment has been extracted.

The index enables efficient retrieval of melodies from the database.

2.1. Pitch Vector Extraction

A melody is here defined as a sequence of L notes n1:L, where i:th
note ni = 〈pi, bi, ei〉 is defined by pitch pi in MIDI note numbers,

and the onset time bi and the offset time ei of the note in seconds.

The melodic fragments are represented as pitch vectors which are

extracted from such note sequences.

Given a melody n1:L, the pitch vectors are extracted as follows.

First, rests between consecutive notes are removed by extending

the offset of a preceding note to the onset of the following note,

i.e., ei ← bi+1 for i = 1, . . . , L − 1. Then for each note i, a

pitch vector pi of length d is extracted by determining the melody

pitch values within w-second window starting from the note onset

bi. More exactly, the pitch values are determined on a uniform time

grid bi + j w
(d−1)

, j = 0, . . . , d − 1. No pitch vector is extracted if

the window exceeds the offset of the last note, i.e., bi +w > eL. The

resulting pitch vector pi is then normalized to have zero mean. All-

zero pitch vectors are ignored due to their low information content.

Figure 2 shows an example of pitch vector extraction by using win-

dow size w = 3 s and vector length d = 20. The top panel shows

a part of a melody and the bottom panels show the first four pitch

vectors pi and their extraction positions bi. The above-mentioned

parameter values worked best in our experiments.

The melodic fragment index is constructed by extracting the

pitch vectors from each database melody. The resulting index con-

tains a list of 〈s, bi,pi〉 records, where s identifies the song, bi de-

fines the extraction position within the song, and pi represents the

melodic fragment.

2.2. Similarity of Melodic Fragments

The similarity of melodic fragments is here measured using Eu-

clidean distance between pitch vectors. Formally, two pitch vectors

pi and pj define points in d-dimensional space where the distance

is given by

‖pi − pj‖ =

dX

k=1

|pi(k)− pj(k)|2
!(1/2)

. (1)

Euclidean distance is not only simple but also appears to be very

effective measure for similarity (see, e.g., [7]). Given a melodic

fragment defined by point pi, we can find similar fragments in the

index by searching for nearest neighbors (NNs) of the point, i.e., all

the points to which the distance is less than a specified threshold r.

This could be done by simply measuring the distance of pi to all the

vectors in the database. However, this results in a search time that

depends linearly on the database size.

To obtain a sublinear time complexity, we use locality sensitive

hashing [8, 9]. LSH is a randomized algorithm for searching ap-

proximately nearest neighbors in high dimension spaces. The idea

is that the points whose distances are within the threshold r will be

hashed to a same bucket with a certain probability. This user-defined

probability controls the trade-off between the accuracy and the speed

of LSH. In our method, we employ LSH implementation package

E2LSH by the original authors (see http://web.mit.edu/andoni/www/

LSH). Based on the implementation, we built a server for handling

the melodic fragment index and a client for retrieving similar melodic

fragments from the database. Recently, LSH has been applied, e.g.,

in remixed music recognition [10] and in audio fingerprinting [11].

3. QUERY PROCESSING AND MELODY RETRIEVAL

The retrieval stage consists of the following steps: i) transcription of

a sung query into notes, ii) extraction of pitch vectors from the notes,

iii) retrieving similar melodic fragments in the database using LSH,

and iv) performing final ranking of the retrieved melody candidates.

The following subsections explain these steps in more detail.

3.1. Query Transcription and Tuning

A sung query is first converted into a note sequence. For this task, we

use a melody transcription method designed for polyphonic music.

Although it is not necessary to handle polyphony in query transcrip-

tion, this method is used also to produce a melody database directly

from music recordings (see Fig. 1). The method is an improved ver-

sion of [12]. Briefly, the method uses a frame-wise pitch salience es-

timator to measure the strength of different fundamental frequencies

in 92.9 ms analysis frames with 23.2 ms interval between successive

frames. This feature extractor is followed by HMMs representing

melody notes and the background. The method also applies a musi-

cological model to control between-note transitions. As an output,

the method produces a sequence of notes in the format introduced in

Sec. 2. One could also use some other melody transcription method

which produces note sequences, e.g., the method proposed in [12].

The queries are not likely performed in absolute tuning (MIDI

note 69 at 440 Hz), i.e., the tuning of a sung note can be between

two integer MIDI pitches. Therefore, each transcribed query note is

tuned by shifting it in frequency at most half a semitone up or down

so as to maximize pitch salience within the note. Figure 3 shows

an example of transcribed and tuned query notes with the estimated

pitch saliences.

2250

time (s)

M
ID

I n
ot

e
nu

m
be

r

1 2 3 4 5 6 7
45

50

55

60

65

Fig. 3. A transcribed query. The grey-level intensity indicates the

estimated pitch salience and the black boxes show the transcribed

and tuned query notes.

3.2. Retrieval of Candidate Melodies

The tuned query note sequence is then used to retrieve similar melodic

fragments from the database by extracting pitch vectors from the

query notes as explained in Sect. 2.1. It is important to notice that

a user may sing a song in a different tempo compared to the stored

melodic fragments in the index. Therefore, the method extracts sev-

eral pitch vectors with different window sizes for each note. Let

mj denote j:th window size modifier. For each query note onset

bq , the method samples M pitch vectors using window sizes wmj ,

j = 1, . . . , M . A modifier value m < 1 implies that a query

melodic fragment is performed faster than the database melodic frag-

ment. Respectively, a slower performance is indicated by modifier

values greater than one. A reasonable range for window modifier

values is between 0.65–1.7.

For each query pitch vector, the method then searches for similar

melodic fragments in the database using LSH. The LSH returns the

nearest neighbors and their distances to the query point as matches.

Our simulations indicated that it is sufficient to preserve only a few

smallest-distance matches per each query point. After retrieving

matches for all the query points, we have a list of candidate melodies

for final ranking.

3.3. Final Ranking

To obtain the final list of retrieved melodies, the candidate melodies

are ranked according to their distance to the entire query note se-

quence. The ranking is performed by examining all the matches pre-

served in the previous step. One match is denoted by 〈bq, mj , bc, s〉,
where bq is the extraction position of the query pitch vector, mj is

the used window size modifier, bc is the extraction position of the

database melodic fragment, and s is the song identifier. In addition,

let t
(q)
0 and t

(q)
1 denote the onset time of the first query note and the

offset time of the last query note, respectively. Then the time region

corresponding to the entire query in the candidate melody is defined

by t
(c)
0 = bc−(bq−t

(q)
0)/mj and t

(c)
1 = bc+(t

(q)
1 −bq)/mj . Here-

after, the term candidate segment refers to this time region within the

candidate melody. The upper panel in Fig. 4 shows an example how

the candidate segment is determined for one match.

The entire query and the candidate segment are then normalized

both in pitch and time for distance calculation. A note sequence

n1:L is normalized by performing the operations pi ← pi− p̄, bi ←
(bi − b1)/tdur, and ei ← (ei − b1)/tdur for j = 1, . . . , L where

p̄ =
“PL

i=1 pi(ei − bi)
”

/tdur is the mean pitch and tdur = eL − b1

is the duration of the sequence. The lower panel in Fig. 4 shows the

normalized query and the normalized candidate segment.

0 2 4 6 8 10 12 14 16 18
45

50

55

60

65

70

time (s)

M
ID

I n
ot

e
nu

m
be

rs

Matching
fragment

Matching
fragment

Candidate segment

Query notes
Candidate melody notes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−4

−2

0

2

4

6

Normalized duration
N

or
m

al
iz

ed
 p

itc
h

t
(q)
0 t

(q)
1

bq

t
(c)
0 t

(c)
1

bc

Fig. 4. A query and a matching candidate melody. The upper panel

shows the matching fragments in these melodies and the determined

candidate segment (light grey area). The lower panel shows the nor-

malized query and the normalized matching segment for distance

evaluation. See text for details.

The distance between the normalized query and the normalized

candidate segment is evaluated by using recursive alignment (RA)

proposed by Wu et al. [7]. Briefly, RA uses top-down approach to

temporally align two note sequences to minimize their distance in

frequency. First, the method divides the candidate segment into two

halves at position 0.5. The query is also divided to two halves but

using several possible division points, e.g., 0.45, 0.5, and 0.55. For

each division point, the two halves are compared to the halves in

the candidate segment to measure the distance. The division point

which gives the smallest joint distance for the halves is preserved.

Then the method applies the above procedure for the decided halves

independently in a recursive manner. In other words, RA finds the

best global alignment first and then recursively continues to align the

smaller segments. As a result, RA returns the distance between the

aligned note sequences. For details, see [7].

The above distance evaluation is performed for each match. The

minimum distance match per candidate melody is preserved, since

there may exist several candidate segments per melody. Finally, the

list of candidates is sorted in ascending distance order and returned

to the user. If melodies are retrieved from audio, also the candidate

segments are returned to enable playback of the retrieved melodies

in the original music recordings.

4. RESULTS

The method performance is measured using mean reciprocal rank

(MRR) and top-X hit rate criteria. For the i:th query, let ri denote

the rank of correct answer in the retrieved melodies. MRR is then

2251

Table 1. Melody retrieval results.

MRR Top-X hit rate (%)

Corpus N Dsz 1 3 5 10 20

Jang 2797 6030 0.885 86 90 91 92 93

2797 2048 0.909 89 92 93 94 95

Music 159 427 0.578 52 58 62 69 73

given by (1/N)
PN

i=1 r−1
i where N is the number of queries. The

top-X hit rate reports the proportion of queries for which ri ≤ X .

First, we evaluated the method using Roger Jang’s corpus con-

sisting of N = 2797 eight-second queries and 48 ground-truth MIDI

files (available at http://www.cs.nthu.edu.tw/∼jang). We add 5982
melodies from the Essen Associative Code and Folksong database

(EsAC) to obtain a database of Dsz = 6030 melodies. Secondly, we

have a set of 159 queries of 32 different pop songs. In 97 queries, the

users performed the melodies as they remembered them. The rest of

the queries were performed while listening to the piece. We used the

melody transcription method to produce a melody database directly

from 427 full music recordings, including the 32 pop songs. Table 1

summarizes our results on both databases.

For the Jang’s corpus, the method reached MRR of 0.885 and

top-3 hit rate of 90%. For these results, it was sufficient to preserve

only two smallest-distance matches per query point (see Sect. 3.2)

which returned on the average 134 candidate melodies for a query.

Interestingly, MRR of 0.592 could be reached just by ranking the

candidate melodies according to the number of matching melodic

fragments. The used number M of window size modifiers mj was

17, and recursive alignment was used with five possible division

points and two recursion levels. With a Matlab implementation run-

ning on a 3.2 GHz Pentium 4 processor, the mean query time was 4.5
seconds of which the query transcription takes approximately 30%,

LSH 32%, and the final ranking 13%. LSH provided a speed-up of

factor 4–20 compared to exact nearest neighbor search in candidate

retrieval without losing any accuracy in results. Retrieval errors are

mostly related to the query performances: some queries differ from

the correct answer so much that matching is very challenging even

for human.

For a suggestive comparison, the method submitted by Wu and

Li (essentially the method published in [7]) performed best in the

MIREX 2006 evaluation with MRR of 0.900 for the Jang’s cor-

pus. In that evaluation, the corpus was extended with 2000 EsAC

melodies (i.e., Dsz = 2048) and the method was required to search

for matches anywhere in the database melodies similar to our simu-

lations (see www.music-ir.org/mirex2006/index.php/QBSH: Query-

by-Singing/Humming Results for results and abstracts). We evalu-

ated our method also for 2048 melody database and the results are

given on the second row in Table 1. However, our results are not

exactly comparable to MIREX 2006 evaluation since the included

EsAC melodies are not exactly the same ones in these experiments.

The results for the automatically transcribed melody database

are expectedly worse than with the manually prepared MIDI files

in Jang’s corpus. However, the method achieved MRR of 0.578
which is rather encouraging result and motivates for further study.

This result compares favorably to previously reported MRRs for a

200-piece database [6]. For some audio recordings, the transcribed

melodies still contain too many note insertions or deletions in order

to perform successful retrieval. Audio demonstrations of retrieval

from music recordings are available at http://www.cs.tut.fi/sgn/arg/

matti/demos/qbh.

5. CONCLUSIONS

We have proposed a QBH method based on LSH and achieved re-

trieval performance comparable to the state-of-the-art. The method

also achieved promising results for QBH of audio. The current repre-

sentation of melodic fragments enables accurate results but contains

redundant information and consequently uses memory inefficiently.

Future work includes development of a more compact representa-

tion. In addition, retrieval directly from music seems very promising

for future development.

6. ACKNOWLEDGMENTS

The authors would like to thank Roger Jang for providing a fine cor-

pus for QBH research and Alexandr Andoni for the LSH implemen-

tation and advice.

7. REFERENCES

[1] R. Typke, Music Retrieval based on Melodic Similarity, Ph.D.

thesis, Universiteit Utrecht, 2007.

[2] K. Lemström, String Matching Techniques for Music Retrieval,

Ph.D. thesis, University of Helsinki, 2000.

[3] C. Meek and W. Birmingham, “Applications of binary classi-

fication and adaptive boosting to the query-by-humming prob-

lem,” in Proc. 3rd International Conference on Music Infor-

mation Retrieval, 2002.

[4] J.-S. R. Jang, C.-L. Hsu, and H.-R. Lee, “Continuous HMM

and its enhancement for singing/humming query retrieval,” in

Proc. 6th International Conference on Music Information Re-

trieval, 2005.

[5] J.-S. R. Jang and M.-Y. Gao, “A query-by-singing system

based on dynamic programming,” in Proc. International Work-

shop on Intelligent Systems Resolutions, 2000.

[6] A. Duda, A. Nürnberger, and S. Stober, “Towards query by

humming/singing on audio databases,” in Proc. 7th Interna-

tional Conference on Music Information Retrieval, 2007.

[7] X. Wu, M. Li, J. Yang, and Y. Yan, “A top-down approach to

melody match in pitch countour for query by humming,” in

Proc. International Conference of Chinese Spoken Language

Processing, 2006.

[8] A. Andoni and P. Indyk, “Near-optimal hashing algorithms

for approximate nearest neighbor in high dimensions,” in 47th

Annual IEEE Symposium on Foundations of Computer Science

(FOCS’06), 2006, pp. 459–468.

[9] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Locality-

sensitive hashing scheme based on p-stable distributions,” in

Proc. ACM Symposium on Computational Geometry, 2004, pp.

253–262.

[10] M. Casey and M. Slaney, “Fast recognition of remixed mu-

sic audio,” in Proc. 2007 IEEE International Conference on

Acoustics, Speech, and Signal Processing, 2007.

[11] M. Covell and S. Baluja, “Known-audio detection using

Waveprint: Spectrogram fingerprinting by wavelet hashing,”

in Proc. 2007 IEEE International Conference on Acoustics,

Speech, and Signal Processing, 2007.

[12] M. Ryynänen and A. Klapuri, “Transcription of the singing

melody in polyphonic music,” in Proc. 7th International Con-

ference on Music Information Retrieval, 2006.

2252

